A BASAL ABELISAURIA NOVAS, 1992 (THEROPODA-CERATOSAURIA) FROM THE CRETACEOUS OF PATAGONIA, ARGENTINA

Rodolfo A. CORIA
Dirección General de Cultura de Neuquén. Museo "Carmen Funes". 8318 Plaza Huincul, NEUQUÉN. ARGENTINA
E-mail: coriarod@neunet.com.ar

Leonardo SALGADO
Museo de Paleontología y Geología, Universidad Nacional del Comahue. Buenos Aires 1400, 8300 NEUQUÉN. ARGENTINA

ABSTRACT: A new abelisaur theropod, *illokelesia aguadagrandensis* gen. nov., sp. nov., is described, characterized by having: a) quadrate with lateral condyle very reduced and posterior border of the articular surface formed completely from medial condyle, b) cervical vertebrae with very reduced diapostozygapophyseal laminae, c) posterior dorsal vertebrae with infraparapophysial laminae ventrally concave, with parapophyses ventrally oriented, d) dorsal vertebrae lacking pleurocoels, e) caudal vertebrae in central third of the tail with distally expanded transverse processes bearing cranially and caudally projected processes and f) distal edge of caudal transverse processes slightly concave in the mid part. This new theropod represents the most plesiomorphic abelisaur taxon, sharing with Abelisauridae (*Abelisaurus* Bonaparte & Novas, 1985 and *Carnotaurus* Bonaparte, 1985) and Noasauridae (*Noasaurus* Bonaparte & Powell, 1980 and *Ligabueino* Bonaparte, 1996) supraorbital ossification of postorbital, postorbital with intraorbital projection in the jugal process, quadrates with lateral condyle reduced, cervical vertebrae with reduced neural spine, well developed prezygo-epipophyseal laminae and distally expanded caudal transverse processes. *illokelesia* gen. nov. retains postorbital with jugal process perpendicular to horizontal branch, quadrate foramen and cervical epipophyses lacking cranial projection.

RESUMEN: Se describe un nuevo terópodo abelisaurio, *illokelesia aguadagrandensis* gen. nov., sp. nov., caracterizado por poseer: a) cuadrado con cóndilo externo muy reducido y borde posterior de la superficie articular completamente formado por el cóndilo interno, b) vértebras cervicales con lámina diaposto-postzygapofisial muy reducida, c) vértebra dorsal con lámina infraparapofisial ventralmente cóncava, con parapófisis orientadas ventralmente, d) vértebra dorsal posterior sin pleurocoelos, e) vértebras caudales del tercio central de la cola con procesos transversos expandidos distalmente con procesos orientados cranial y caudalmente y f) procesos transversos caudales ligeramente cóncavos en la parte media. Este nuevo terópodo representa el taxón abelisaurio más plesiomórfico, compartiendo con Abelisauridae (*Abelisaurus* Bonaparte & Novas, 1985 y *Carnotaurus* Bonaparte, 1985) y Noasauridae (*Noasaurus* Bonaparte & Powell, 1980 y *Ligabueino* Bonaparte, 1996) osificación supraorbital del postorbital, postorbital con proyección intraorbital en el proceso jugal, cuadrado con el cóndilo externo reducido, vértebras cervicales con espinas neurales reducidas, lámina prezygo-epipofisial bien desarrollada y procesos transversos caudales expandidos distalmente. *illokelesia* gen. nov. retiene postorbital con proceso jugal perpendicular a la rama horizontal, foramen cuadrado y epipófisis cervicales carentes de proyección cranial.
INTRODUCTION

The record of Cretaceous theropod dinosaurs from South America is composed by a complex and rather diversified group of genera whose phylogenetic relationships still remain poorly understood (see Bonaparte, 1996). In the last few years, many and interesting new taxa have been reported from Patagonia (Coria & Salgado, 1995; Bonaparte, 1996; Novas, 1997; Novas & Puerta, 1997). At present, the main Cretaceous theropod clade in South America, with the greatest amount of genera involved seems to be the Abelisauria (Novas, 1992), including Abelisaurus comahuensis Bonaparte & Novas, 1985, Carnotaurus sastrei Bonaparte, 1985, Xenotarsosaurus bonapartei Martinez et al., 1986, Noasaurus leali Bonaparte & Powell, 1980, and the recently published Ligabueino andesi Bonaparte, 1996. Although the South American record is the best known, the Abelisauria seems to be a group of theropods widely distributed in the Cretaceous, since its presence has been reported from Africa, Madagascar, India and Europe (Bonaparte, 1991b; Buffetaut et al., 1988; Sampson et al., 1996).

In 1991, the first theropod remains from the Huincul Member, Rio Limay Formation were reported (Coria et al., 1991), being represented by a fragmentary but diagnostic specimen and proposed to be the sister group of Abelisauridae and Noasauridae. In the present paper, this new theropod is described in detail and their phylogenetic relationships are discussed. Finally, the global relationships of the Neoceratosauria (Ceratosaurus + Abelisauria) (Novas, 1989, 1992) are revised.

SYSTEMATIC PALEONTOLOGY

Dinosauria, Owen 1842
Theropoda, Marsh 1881
Ceratosauria, Marsh 1884
Neoceratosauria, Novas 1989
Abelisauria, Novas 1992

Ilokelesia gen. nov.

Type species: Ilokelesia aguadagrandensis sp. nov.

Diagnosis: Medium-sized theropod, distinguished by the following autapomorphies: quadrate with lateral condyle very reduced and posterior border of the articular surface formed completely from medial condyle; cervical vertebrae with poorly defined diapo-postzygapophysial laminae; posterior dorsal vertebrae with infraparapophysial laminae.

Fig. 1 - Map showing the location of the site where the holotype of Ilokelesia aguadagrandensis gen. nov., sp. nov. was found.
ventrally concave, and parapophysis ventrally oriented; posterior dorsal vertebrae lacking pleurocoels; caudal vertebrae in central third of the tail with distally expanded transverse processes bearing cranially and caudally projecting processes; distal edge of caudal transverse processes slightly concave in the mid part.

**Etymology:** From the indigenous Mapuche language, *ilo*, flesh; and *kelesio*, lizard, a flesh-eating reptile.

*Ilokelesia aguadagrandensis* sp. nov.

*(Fig. 2-10)*

**Diagnosis:** As for genus.

**Holotype:** PVPH-35. Right postorbital, right quadrate, occipital condyle, 3rd cervical vertebra partially preserved, 4th cervical vertebra, posterior dorsal vertebrae, five articulated mid caudal vertebrae, three fragmentary cervical ribs, eight proximal haemal arches, eight preungual phalanges, two ungual phalanges.

**Horizon and locality:** Río Limay Formation, Huincul Member, Neuquén Group (Albian - Cenomanian). From Aguada Grande, 15 km southern Plaza Huincul City, Neuquén Province, Argentina (Fig. 1).

**Etymology:** From Aguada Grande, where the specimen was found.

**DESCRIPTION**

**POSTORBITAL**

A nearly complete postorbital is preserved (Fig. 2). It is "T"-shaped, with a long, strong jugal process, which is vertically oriented with a flattened latero-dorsal end and is triangular in cross-section. It meets the horizontal branch at a right angle. Distally, the jugal process exhibits a relatively weak suture for the jugal. In dorsal view, moderate rugosities are apparent. In lateral view, the dorsal portion presents a brow-like supraorbital process like in *Abelisaurus* (MPCA-11098) *(Fig. 3D)* and *Giganotosaurus* *(Coria & Salgado, 1995)* (MUCPv-CH-1). The process for the lacrimal is thick. In medial view, a facet for articulation with the laterosphenoid is visible. In lateral view the horizontal branch of the postorbital exhibits a dorsal boss, with its apex located above the caudal edge of the jugal process (Fig. 2A). The dorsal edge of the lacrimal process becomes nearly horizontal distally. There is an intraorbital projection as in *Abelisaurus*, *Carnotaurus* *(Fig. 3D-E)*, *Giganotosaurus* and *Tyrannosaurus* *(Osborn, 1905)*. It is placed below the mid point of the cranial side of the jugal process, and is slightly upwardly inclined. It does not reach the distal end of the jugal process. The lateral surface of the jugal process is proximally flat and wide; the distal end is rod-shaped. The caudal edge bears a wide longitudinal groove.

---

Fig. 2 - *Ilokelesia aguadagrandensis* gen.nov., sp.nov. Holotype. Right postorbital. A - Lateral view. B - Medial view. Abbreviations: *ip* - Intraorbital process; *so* - Supraorbital ossification.
**CERVICAL VERTEBRAE**

3rd Cervical. This vertebra has preserved only its right half. The neural arch is relatively long and low. In lateral view, large pneumatic foramina are visible below the transverse process. There is an extensive lamina connecting the prezygapophysis with the epipophysis, which sharply separates the lateral and dorsal areas of the neural arch. The epipophysis is well developed, backwardly oriented, and lacks an cranial projection. The lateral surface of the centrum bears two pleurocoels.

4th Cervical (Fig. 5). This vertebra is complete. The neural arch is relatively high, with a laterally compressed, relatively reduced neural spine which however reaches the level of the epipophysis. As in the vertebra described above, the epipophyses are well developed, postero-laterally oriented, with no cranial projections. In lateral view the post-diapophyseal lamina is reduced, being represented by a shallow ridge (Fig. 5B). The lateral edge of the prezygapophyses is also connected to the epipophyses by a thin lamina that clearly separates the dorsal from lateral surfaces of the neural arch like in *Carnotaurus* (MACN-CH-894) and *Noasaurus* (PVL-4061) (Fig. 6C-D).

**QUADRATE**

A right quadrate is represented by two portions which are unconnected (Fig. 4). The dorsal portion exhibits the condyle for articulation with the squamosal. The cranial surface is transversally concave. The medial process which articulates with the pterygoid is not preserved. The lateral lamina is preserved only dorsally. In caudal view, the squamosal condyle slopes dorso-laterally. The ventral portion of the quadrate includes the cranio-mandibular articulation. The medial border is very concave, and the lateral is broken. There is a conspicuous process situated 2.5 cm above the lateral condyle.

The articular surface is formed by two condyles. In posterior view, the articulation looks transversely convex. The lateral condyle is quite small and slightly transversally oriented. A relatively deep fossa occurs above the lateral condyle. The medial condyle is larger than the lateral one, and is antero-laterally oriented. The dorsal and ventral edges of the medial condyle exceed those of the lateral in size. The cranial end of the medial condyle protrudes beyond that of the lateral condyle.

**Fig. 4 - Ilokelesia aguaagrandensis** gen.nov., sp.nov. Holotype. Right quadrate. **A** - Cranial view. **B** - Caudal view. **C** - Ventral view. Abbreviations: ec - Lateral condyle.
In anterior view a deep depression is present below the neural spine (Fig. 5C). In posterior view another depression is situated above the neural canal, although it is not so deep as the anterior one (Fig. 5D). There are two foramina on each side of the neural canal. The centrum is opisthocoelus, low and slightly compressed laterally. Pleurocoelic foramina are situated below the infradiapophysial laminae. In ventral view, a small keel is cranially placed. In cervical neural arches of Carnotaurus (MACN-CH-894) (Fig. 6D), Noasaurus (PVL-4061) (Fig. 6C), Ligabeusino (MACN-N-42) and Ceratosaurus (Gilmore, 1920) (Fig. 6A), the dorsal surface of the diapophysis is clearly differentiated from the posterior side by
a well-marked lamina which connects the diapophysis with the cranial edge of the postzygapophysis. In *Ilokelesia* gen.nov., although this lamina is present, it is not well-marked and forms a shallow edge. In *Carnotaurus* and *Noasaurus* (Fig. 6C-D), the diapo-postzygapophysial lamina contributes to the formation of the cranial border of a deep cavity. In *Ilokelesia*, the diapo-postzygapophysial lamina does not participate of the margin of such a cavity which is situated well behind the lamina.

**DORSAL VERTEBRAE**

The only preserved dorsal vertebra is from the posterior part of the presacral column (Fig. 7). The neural spine and right transverse process are missing. In dorsal view (Fig. 7A), the distal end of the left transverse process is cranio-caudally expanded like in *Ceratosaurus* (USNM-4735) and *Carnotaurus* (MACN-CH-894) (Fig. 8C-D). The diapophysis and parapophysis are connected by a well-developed parapo-diapophysial lamina. The infraparapophysial lamina is well-developed, separating the parapophysis from the sagittal plane. Thus, both parapophysis and diapophysis are at the same level. The parapophysis is, however, located below the diapophysis and faces ventrally. In lateral view the infradiapophysial lamina is caudally concave, while the infraparapophysial lamina is cranially concave as in *Carnotaurus* (Fig. 8B). A thick lamina connects the parapophysis with the center of the shaft of the infradiapophysial lamina separating two wide cavities. The prezygapophysis bears a ventral process which is ventro-cranially oriented as in *Carnotaurus*. There is a supraprezygapophysial lamina connecting the prezygapophysis with the dorsal surface of the transverse process. Both this lamina and the base of the infra-parapophysial lamina limit a large cavity that penetrates into the neural arch. The hypantrum is wide. In caudal view, the articular surfaces of the postzygapophyses are medio-ventrally oriented. The hyposphere is deep and well-developed. The centrum is low and its articular surfaces are concave, seeming to be wider than high. The lateral surfaces bear marked depressions just below the juncture of the centrum and the neural arch, but no pleurocoelic foramina are present. In ventral view, a very poorly defined median keel can be observed, which is cranially situated. In the dorsal vertebrae of *Carnotaurus* (Fig. 8C-D) and other ceratosaurs, parapophyses are upward or laterally facing. *Ilokelesia* gen.nov. is unique in having: 1) an infradiapophysial lamina which is ventrally concave, and 2) parapophyses oriented downwards to nearly reach the level of the neural canal (Fig. 8A-B). There are shallow depressions on each side of the dorsal centrum of *Ilokelesia* gen.nov., but no pleurocoelic foramen, in contrast with most theropods where dorsal vertebrae are known, in which a pleurocoelic foramen is present in the lateral side of the centrum throughout the dorsal series.

**CAUDAL VERTEBRAE**

Five articulated caudal vertebrae are preserved. All exhibit reduced neural spines which are laterally compressed and caudally positioned (Fig. 9). The prezygapophyses are elongated, with their articular surfaces sloping inward. The postzygapophyses are small. The transverse processes project laterally, perpendicular to the dorsoventral axis of the vertebrae and slightly behind the midpoint of the centrum. The distal ends are very expanded like in *Carnotaurus* (Fig. 10E-H), but with cranial and caudal projections (Fig. 10I-J). This condition is not present in more primitive neoceratosaurids like *Ceratosaurus* (Fig. 10A-D). The distal edge are slightly concave in the mid part. The dorsal surface of the neural arch is broad (Fig. 9A). It is divided by a shallow crest, which connects the anterior border of the neural arch to the cranial edge of the neural spine. This is interpreted as the prespinal lamina. The first centrum of the series is the longest. The centra are amphicoelous. No pleurocoels are visible on the lateral surface of the centra. A shallow longitudinal groove is present along the ventral face of all centra (Fig. 10J).

---

**Fig. 6** - Comparison of cervical vertebra in lateral view.  
**A** - *Ceratosaurus* (GILMORE, 1920).  
**B** - *Ilokelesia* gen.nov.  
**C** - *Noasaurus* (PVL-4061).  
**D** - *Carnotaurus* (MACN-CH-894).
CERVICAL RIBS

Three fragmentary cervical ribs are preserved. The proximal end presents a well-defined capitulum and tuberculum (Fig. 11). A conspicuous process projects cranially below the capitulum and is connected to it by a thin lamina. The ventral surface of the shaft is broad and flat proximally. Dorsal and ventral ridges link the shaft to the capitulum. The fragmentary shaft is a rod-like bone, with a slightly sigmoid curvature, probably resulting from a post-mortem deformation.

HAEMAL ARCHES

Three almost complete cranial haemal arches are preserved as well as major portions of five additional more caudal arches (Fig. 12). They are proportionally long and slender. The articular ends are relatively wide, finishing in a single articular facet which encloses the haemal canal dorsally.

The haemal arches are slightly caudally curved. The anterior ones are slender, although relatively stouter than the more caudal ones. The transverse diameter of the haemal spine is slightly smaller than the antero-caudal diameter but the caudal spines are strikingly laterally compressed. The proximal ends bear two cranial projections; the distal ends are unexpanded. Below the haemal canal, on the caudal face, there is a shallow groove along the proximal half of the haemal spine.

PHALANGES

Ten pedal phalanges have been preserved, including two unguals. The specimen provides much information pertaining to phalangeal morphology.
The preungual phalanges show the typical morphology present in most mid and large-sized theropods with wide, concave proximal articular surfaces and well developed distal articulations. Phalanx II-1 is a long, slightly laterally compressed and asymmetrical element and the phalanx II-2 is shorter and stouter than II-1. The phalanx III-1 is the stoutest among those preserved (Fig. 13A-F) with its distal articular end lacking central groove. This feature helps to identify phalanx III-2 which has no a central keel in its proximal articular end (Fig. 13G-L). The phalanx IV-3 is short and stout and its anterocaudal axis is slightly longer than the transverse axis. The phalanx IV-4 is small and similar to the preceding one although it is much shorter. Thus, the proximal and distal ends are very close to each other.

**UNGUAL PHALANGES**

The element is concave below, convex above, rather stout and rather asymmetrical (Fig. 14). The proximal end is heavily built and bears a caudally oriented dorsal projection. A median keel divides the articular surface. The medial edge is concave dorsally. The medial surface bears a caudally bifurcating groove. The lateral side is flatter. The ventral surface is shallowly excavated; there is no flexor tubercle. The distal end of the phalanx, though acuminate, is relatively blunt.

**PHYLOGENETIC DISCUSSION**

Ceratosaurian monophyly has already been proposed by several authors (GAUTHIER, 1986; GAUTHIER & PADIAN, 1985; ROWE, 1989; ROWE & GAUTHIER, 1990, HOLTZ, 1994), as the plesiomorphic sister taxon of all remaining theropods. This taxon, postulated to have originated during Late Triassic time, has been extended with the inclusion of South American Cretaceous theropods (BONAPARTE, NOVAS & CORIA, 1990; BONAPARTE, 1991b; NOVAS, 1989, 1992). BONAPARTE, NOVAS & CORIA (1990) recognized a systematic entity on the superfamilial level, the Ceratosauroidea, which would contain the families Ceratosauridae, Abelisauridae and Noasauridae. We shall follow NOVAS (1992) in the recognition of the Abelisauria as the sister group of Ceratosaurus. Ceratosaurus and Abelisauria, in turn, were proposed by the same author as forming the Neoceratosauria (NOVAS, 1989, 1992), the sister
A BASAL ABELISAURIA FROM THE CRETACEOUS OF PATAGONIA, ARGENTINA


None of the characters used in the analyses are autapomorphic for the taxa under consideration. Seven ceratosaur taxa were chosen in order to make an approach to the phylogenetic position of Illokelesia gen. nov. Forty six cranial and postcranial characters were polarized using Tetanurae and Herrerasauridae as successively more distant outgroups. The data matrix was analyzed using Farris's program Hennig 86, version 1.5.

A single most parsimonious tree of 48 steps with a consistency index of 0.93 and retention index of 0.93 was obtained. In the tree, Illokelesia gen. nov. is shown to be the sister group of Abelisauridae (NOVAS, 1989) which includes Noasauridae and

specimens are rather fragmentary, and they do not contribute any significant anatomical information for phylogenetic analysis. Recently, a well preserved theropod specimen was discovered in Madagascar, with unquestionable abelisaur affinities (SAMPSON et al., 1997). The anatomical information of such a remarkable specimen was not available at the moment the present paper was currently done.

In the present paper, Illokelesia gen. nov. was compared with all abelisaur theropods from South America, and also with Ceratosaurus (GILMORE, 1920), Dilophosaurus (WELLES, 1984) and the higher Coelophysidae because their close relationships with the Abelisauria. Abelisaurids have been also reported outside South America (BONAPARTE, 1996; SAMPSON et al., 1996) bearing significant paleobiogeographic information. However, those

Fig.11 - Illokelesia aguada grandensis gen. nov., sp. nov. Holotype. Left cervical rib. A - Lateral view. B - Ventral view.
Abelisauridae (Fig. 15), sharing the following apomorphies:

- Postorbital with intraorbital projection

The postorbital of *Ilokelesia* shares with those of *Carnotaurus* BONAPARTE, 1985; *Abelisaurus* BONAPARTE & NOVAS, 1985; and *Giganotosaurus* CORIA & SALGADO, 1995; the presence of an intraorbital projection, although it retains the perpendicular orientation between the horizontal and jugal ramii as in *Ceratosaurus* (GILMORE, 1920) and *Allosaurus* (MADSEN, 1976) (Fig. 9). A supraorbital ossification is reminiscent of the condition present in *Abelisaurus* (BONAPARTE & NOVAS, 1985), but also is present in the carcharodontosaurids *Carcharodontosaurus* STROMER, 1931 (SERENO et al., 1996) and *Giganotosaurus* (CORIA & SALGADO, 1995).

- Quadrate with lateral condyle reduced

The ventral articular end of the quadrate of *Ilokelesia* is typically formed from two condyles, separated by a groove, and the lateral condyle is reduced. The lateral condyle is reduced in *Carnotaurus* (MACN-CH- 894), *Abelisaurus* (MPCA-11098), *Torvosaurus* GALTON & JENSEN, 1979 (BRITT, 1991) and apparently in *Dilophosaurus* (WELLES, 1984). According our analysis, this character is considered to be a synapomorphy of the Abelisauria, being independently developed in *Dilophosaurus*. In *Ceratosaurus* and primitive Tetanurae (i.e. *Allosaurus*, *Giganotosaurus*) the condyles are equal in size. BRITT (1991) described a marked cranial protrusion of the medial condyle in *Torvosau-*

---

**Fig. 12** - *Ilokelesia* aguadagrandensis gen.nov., sp.nov. Holotype. Anterior haemal arch. A - Lateral view. B - Caudal view.

A BASAL ABELISAURIA FROM THE CRETACEOUS OF PATAGONIA, ARGENTINA


*Ilokelesia* gen.nov., which is also present in *Ilokelesia* gen.nov. However, we can recognize here the autapomorphic condition: almost all of the caudal border of the distal articular end of the quadrate is formed from the medial condyle.

- Dorsal surface of cervical neural arches clearly delimited from lateral side of diapophyses by a highly developed prezygapo-epipophysial lamina

*Ilokelesia* gen.nov. shares with *Carnotaurus* and *Noasaurus* in having the dorsal surface of the cervical neural arches well separated from the lateral surface by a prezygapo-epipophysial lamina (BONAPARTE, 1996). In contrast, *Ilokelesia* retains epipophysis with no cranial projection, as occurs in *Noasaurus* and *Carnotaurus*.

- Cervical ribs with caudal branches wide and strongly flattened

*Ilokelesia* gen.nov. possesses cervical ribs quite similar to those of *Carnotaurus* and in lesser degree to *Noasaurus* in being proximally wide and flat, with a distal, rod-like shaft.

- Caudal vertebra with transverse process bearing antero-caudally expanded distal ends

Caudal vertebrae of *Carnotaurus* bear transverse processes with expanded distal ends having a conspicuous cranial projection. In *Ilokelesia* gen.nov., the transverse process bear also strong caudal projections (Fig. 14). In *Carnotaurus* also, the distal ends of caudal transverse processes are

**Fig. 15** - Cladogram showing the phylogenetic position of *Ilokelesia* gen.nov. among Abelisauria.
convex; while in Ilokelesia gen. nov., the distal edge of transverse processes are slightly concave.

Ceratosaurus and Dilophosaurus + higher Coelophysidae are successively more remote sister groups of Abelisauria. Although Ilokelesia gen. nov. shares with Dilophosaurus + higher Coelophysidae the lack of pleurocoelic foramina in dorsal vertebrae, this character is interpreted as an homoplasy.

On the other hand, Ilokelesia gen. nov. is plesiomorphic with respect to Abelisauridae (Novas, 1989) in having: a) jugal process of postorbital perpendicular to horizontal branch, b) well-developed neural spines on cervical vertebrae, and c) cervical epipophyses lacking cranial projection.

In this way, the Ceratosaurus is seen to be composed of two clearly distant clades (Novas, 1989, 1992; Holtz, 1994): the Coelophysoidea (Holtz, 1994) for Dilophosaurus, Liliensternus Welles, 1984, and more derived forms (sensu Rowe & Gauthier, 1990) representing the oldest ceratosaurian theropods, and the Neoceratosaurus, including Ilokelesia gen. nov. and Ceratosaurus as the successive sister groups of the Abelisauria, including the youngest record for the Ceratosaurus, surviving into the Late Cretaceous.

Martínez et al. (1986) described Xenotarsosaurus bonapartei Martínez et al., 1986 (UNPSJB-Pv-184 y 612), a medium-sized theropod from Bajo Barreal Formation (Lower Santonian), and assigned it to the family Abelisauridae. Novas (1989) proposed the presence of concave articular surface in the dorsal centra as an autapomorphy of Xenotarsosaurus Martínez et al., 1986, based upon a single cranial dorsal vertebrae. The caudal dorsal of Ilokelesia gen. nov. bears a similar condition, which could be interpreted as a synapomorphy of both genera. Also the presence of deep pre- and postspinal depressions in the only neural arches known of Xenotarsosaurus, is herein proposed as a synapomorphy of all the Neoceratosaurus. At present, there is no available material for making comparisons between Xenotarsosaurus and Ilokelesia gen. nov., so the mutual affinities of both taxa remain unclear. Although we do not reject the validity of Xenotarsosaurus as a monophyletic taxon, its phylogenetic position not only among the Abelisauria but also among the Neoceratosaurus is considered to be problematic (Coria & Rodriguez, 1993).

ACKNOWLEDGMENTS

We are in debt to Drs. J. Bonaparte, F. Novas, D. Russell and P. Sereno for useful comments in early drafts of this paper. M.C. Gravino and C. Iuliano helped with the drawings. To the technicians of Museo "Carmen Funes" for preparation work. To J.F. Bonaparte (MACN), M. Brett-Surman (USNM), J. Powell (PVL) and J.C. Muñoz (MPCA) for access to specimens under their care. To Drs. B. Pérez-Moreno and T. Holtz (Jr.) for critical review. This research is part of the project "Dinosaurs of the Neuquén Basin" supported by Dirección General de Cultura de Neuquén and Universidad Nacional del Comahue.

ABBREVIATIONS

PVPH - Paleontología de Vertebrados, Museo "Carmen Funes" de Plaza Huincul, Neuquén, Argentina; MACN - Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina; MPCA - Museo Provincial "Carlos Ameghino" Cipolletti, Río Negro, Argentina; MUCPv-CH - Museo de la Universidad Nacional del Comahue, Paleontología de Vertebrados, colección Chocón, Argentina; PVL - Paleontología de Vertebrados, Instituto Lillo, Tucumán, Argentina. UNPSJB-Pv - Universidad Nacional de la Patagonia "San Juan Bosco", Paleontología de Vertebrados, Comodoro Rivadavia, Chubut, Argentina; USNM - United States National Museum, Smithsonian Institute, Washington DC, USA.

APPENDIX I

Diagnosis of taxa present in the cladogram of Figure 13. Autapomorphies are not considered.

Ceratosaurus Gauthier, 1986
1. Ventral groove in cranial caudal centra (Rowe & Gauthier, 1990).
2. Two pairs of pleurocoels in cervical vertebrae (Rowe & Gauthier, 1990).
4. Pubis with fenestra below obturator foramen (Rowe & Gauthier, 1990).
5. Sacrum with transverse processes, ribs fused to each another, and sacral ribs fused to ilia (Rowe & Gauthier, 1990).
6. Pubis, ischium and ileum fused to each other (Rowe & Gauthier, 1990).
7. Trochanteric shelf (Rowe & Gauthier, 1990).
9. Astragalus and calcaneum fused to each other and to the tibia (Rowe & Gauthier, 1990).
10. Ascending process of astragalus vertically oriented (Rowe & Gauthier, 1990).
11. Distal tarsals II and III fused to metatarsals (Rowe & Gauthier, 1990).

Coelophysoidea Holtz, 1994
**A BASAL ABELISAURIA FROM THE CRETACEOUS OF PATAGONIA, ARGENTINA**

**REFERENCES**


---


Neoceratosauroidea NOVAS, 1989

17. Axis with pleurocoels behind prezigapophyses; many foramina surrounding diploxyphyses (NOVAS, 1992).

18. Sacrum composed of seven vertebrae, with sacral 3, 4 and 5 strongly fused and transversely compressed (NOVAS, 1992).


Abelisauridae NOVAS, 1992


25. Caudal vertebrae with transverse processes distally expanded.

26. Presence of deep pre-and postspinal depressions (Basins?).

Abelisaurideoidea NOVAS, 1989

27. Maxilla with ascending ramus subvertical, no contact with lacrimal (NOVAS, 1992).


Abelisauridae BONAPARTE & NOVAS, 1985

30. Premaxilla antero-caudally short and dorso-ventrally high, with no caudal narial ramus (NOVAS, 1989).


33. Maxillary fenestra partially visible in lateral view (NOVAS, 1989).

34. Subnarial fenestra between premaxilla and maxilla absent (NOVAS, 1989).

35. Antorbital fenestra with lateral and medial borders on the same level (NOVAS, 1989).


38. Lacrimal with no horn nor pneumatic foramina (NOVAS, 1989).

39. Lacrimal with ventral process dorso-ventrally shortened, convex cranial margin and sinuous caudal margin (NOVAS, 1989).

40. Postorbital slopes anteroventrally, with dorsal margin poster-ventrally inclined and caudal edge of ascending ramus cranially inclined (NOVAS, 1989).

41. Postorbital with cranial edge deeply concave and ventral process antero-ventrally inclined, dividing orbital fenestra into two sectors (NOVAS, 1989).

42. Quadrate lacking quadratic foramen and strongly fused to quadrate-jugal (NOVAS, 1989).

43. Parietal with sagittal crest transversely thickened caudally (NOVAS, 1989).

44. Occipital crest transversely expanded (NOVAS, 1989).
R.A. CORIA & L. SALGADO


